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ABSTRACT 

A finite difference scheme is developed for numerical integration of the nondivergent barotropic vorticity equation 
with an icosahedral-hexagonal grid covering the sphere. The grid is made by dividing the 20 triangular faces of an 
icosahedron into smaller triangles, the vertices of which are the grid points. Each grid point is surrounded by six 
neighboring points, except the 12 vertices of the icosahedron which are surrounded by five points. The difference 
scheme for the advection of vorticity exactly conserves total vorticity, total square vorticity, and total kinetic energy. 
A numerical test is made, with a stationary Neamtan wave as the initial condition, by integrating over 8 days with 
1-hr. time steps and a grid of 1002 points for the sphere. There is practically no distortion of the waves over the 8 days, 
but there is a phase displacement error of about 1" of long. per day toward the west. 

1. INTRODUCTION great circles, but the equalities of the shape and areas 
of the triangles are not maintained. 

For numerical integration of the equations of atmos- In this paper we have chosen a somewhat different 
pheric motion in the global domain, it is desirable to use procedure, which better preserves the equality of grid 
a quasi-uniform grid which divides the sphere into distances. We start from a spherical icosahedron, made 
elements that are nearly equal in area and in shape. of 20 equal spherical triangles, one face of which is shown 

Gates and Riegel [l] and Kurihara [2] constructed in figure 2. Let ABC be the face of the spherical triangle. 
global grids with quasi-uniform mesh size, using the 
principle of a decreasing number of points along the 
latitude circles as one approaches the poles. 

In  our scheme, the sphere is divided into 20 spherical 
triangles (to form a spherical icosahedron), with each 
triangular face further subdivided into smaller triangles. 
This division of the globe was used for geomagnetic 
studies by Vestine et al. [3]. We desire to use this grid 
for numerical integration of the equations of atmospheric 
motion. As a first step in this direction, we are showing 
here a method for integration of the nondivergent 
baro tropic vorticity e q ~ a t i o n . ~  

9. DESCRIPTION AND INDEXING OF THE GRID 

There are several ways to construct a grid based on the 
icosahedron. The plane icosahedron inscribed into the 
sphere has 12 vertices and 20 plane faces which are equi- 
lateral triangles of equal size (fig. 1). Each triangular face 
can be divided into nz equal equilateral triangles by 
drawing (n-1) equally spaced parallels to each side. 
The grid thus obtained can be projected radially onto the 
surface of the sphere. All of the projected lines are arcs of 

1 U.C.L.A. Department of Meteorology, Contribution No. 146. 
2 Present affiliation: Service d'Aeronomie du C.N. R.S.,  91-VerriBres-le-Buhon, France. 
3 While this manuscript was being prepared for publication, we learned that a similar 

calculation, with practically the same grid scheme, had been made by Mr. David 
Williamson, of the Meteorology Department, Massachusetts Institute of Technology, 
and subsequently issued as NCAR Manuscript No. 443. FIGURE 1.-The plane icosahedron. 
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FIGURE 2.-Construction of the grid on a spherical triangle, 
for n=6. 

NORTH POLE 

t 

4 
SOUTH POLE 

FIGURE 3.-Representation of the icosahedral-hexagonal grid, 
for n=6. 

We divide the great circle arcs AB and AC into n equal 
arcs, to  give the points B1, . . ., Bn-l, B, (coinciding with 
B) and Cl, . . ., C, (coinciding with 0. Then we take 
each great circle arc BiCi and divide it into i equal parts. 
The distance between adjacent grid points, in any direc- 
tion, varies by less than 10 percent over the spherical 
triangle. 

If 0 is the center of the sphere, then we have to solve 
the linear system 

n dd 

OA . OBt=cos{ (i/n)AB), 
OB. OBi= cos { (1  -i/n)AB}, 

n A -  

-A- 

(OA, OB,  OBJ=O. 

FIGURE 4.-Indexing of a rhombus cell, for n=6. 

The third equation expresses the condition that 0, A, B, 
Bi be coplanar. Here the radius of the sphere is equal to 
1, and A 2  is the arc AB measured in radians. 

In Cartesian coordinates this system is expressed by 

 xi+ YAY*+ ~ A Z F  a~ 9 

xBxi+  Y B y t  + z B z t =  a B ,  1:: Yf Y A  +o, 

XB Y B  

h n 
where LU,=COS{ (;/..)AB} and aB=cos{ (I-i/n)AB). We 
solve this system for xt, y t ,  Zi. 

Each point on the face or edge of one of the 20 faces 
of the icosahedron is now surrounded by six triangles and 
is therefore in the center of a hexagon. However, the 
points which form the vertices of the icosahedron are 
surrounded by only five triangles and therefore these 12 
singular points are the centers of pentagons. 

As shown in figure 3, the poles were chosen as two 
pentagonal points. The triangular faces of the icosahedron 
were arranged into 10 pairs of adjoining faces, forming 
10 rhombuses; five around the North Pole and five around 
the South Pole, indexed from 1 to 10. The grid points 
inside each rhombus were indexed with two indices (i, j ) ,  
as shown in the example of figure 4. The two Poles, where 
five rhombuses meet, are treated separately, but with 
the same finite difference scheme as the other vertices. 

For the simplicity of the programming, all the fields 
were defined in a lOX(n+2)X(n+2) array. The over- 
lapping simplified the programming on the boundaries 
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of the rhombuses, the extra values being periodically 
redefined by identifications. 

In our numerical example, we used a coarse grid by 
taking n=10. This gave 1002 grid points for the entire 
sphere. With n= 10, the areas of the hexagons fall between 
0.481 and 0.551 X lo6 km.2 The ratio of minimum to maxi- 
mum grid area is a function of the resolution and decreases 
with increasing n. 

3. THE FINITE DIFFERENCE JACOBIAN FOR A 
TRIANGULAR GRID 

The nondivergent barotropic vorticity equation can be 
written 

where y5 is the stream function, r is the vorticity of the 
horizontal wind, t is time, and J is the Jacobian operator. 

Arakawa [4] showed that certain integral constraints 
which hold for the differential form of the above equation 
will also be maintained in the finite difference analog of 
this equation, if the finite difference Jacobian is written 
in an appropriate way. 

The integral constraints which are maintained in this 
scheme are the kinetic energy, the total vorticity, and 
the total square vorticity. When these properties are 
conserved, nonlinear computational instability cannot 
occur. Moreover, the spectral distribution of the kinetic 
energy is constrained to maintain its average scale. 

The Jacobian in differential form, J(r,  $), has the 
following property: 

for n# -1. Here D is any domain bounded by the curve 
C, and alas refers to the derivative along the curve C. 

If we let the domain, D, be the entire surface of the 
sphere, S, equation (1) reduces to  

In hhis nondivergent, barotropic fluid, the kinetic 
energy per unit area is 

Then 
K= +V$* V$. 

Integrating over the whole sphere, the time change of the 
total kinetic energy is 

From the above, and by setting n=l in equation (l'), 
we see that the total kinetic energy is conserved. In a 
similar way, it can be shown that the conservations of 
total vorticity and total square vorticity also come from 
the integral constraints of the differential Jacobian given 
by equation (1'), for n = O  and n=l. 

In the following, *will refer to  a grid point and A to a 
triangle. We start from the quantities $f and p i  defined a t  
the vertices of each triangle A. By linear interpolation 
from $* and tf, we can define $ and { everywhere. These 
interpolated values, which we call $ and f, are continuous 
functions of space. Because of the linear interpolation, the 
gradients V$ and Vf are constant within each individual 
triangle, but discontinuous a t  the boundaries. However, the 
tangential derivatives, af /as and @/as, are continuous a t  
the boundaries of the triangles. 

J($, f) is constant inside each trhngle and is called Ja. 
It has the properties 

where is the boundary of the triangle A. 
Summing over all the - triangles in S, and owing to the 

- - $ a s  
as as 

continuity of $, r ,  - 9  -, we get 

which shows that J A  satisfies all of the above integral 
constraints. J A  is also a three point finite difference 
approximation for the Jacobian. Setting n = O  in (2), 
and rewriting the line integral as a sum, we get 

(3) 

where i is 1, 2, or 3 and i+l=l when i = 3 .  SA is the area 
of the triangle. This formula is valid whatever the shape 
of the triangle. 

For the numerical integration we need a Jacobian, 
J*, defined at  the grid points which are the vertices 
of the triangles. Just as J A  was obtained by taking the 
circulation of (p$) along r and dividing by SA, so we 
can similarly obtain J* by taking the circulation of 
({V$) alorig the sides of the polygon, P*, made up of the 
six triangles (five a t  the singular points) which have that 
point as a common vertex. If N=5 or 6 is the number 
of sides of this polygon, we get 

(4) 

where i refers to the vertices of P*, ordered sequentially 
counterclockwise (where N+1 is replaced by 1) and 
S* is the area of the polygon. 

298-690 0 - 68 - 3 
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mations for the integral constraints on the differential 
Jacobian : 

S*J* is the summation of the circulations, SAJA, 
previously considered for all the triangles A surrounding 
the point. 

This expression of the Jacobian can also be written in 
several equivalent forms : 

1 N 1  
s* f=1 

J*=- c 2+f ( l f - - ' - l f+ l ) ,  

which lead, respectively, to the conservations of total 
square vorticity, total kinetic energy, and total vorticity. (4c) 

These formulas are valid for either plane or spherical 

Summing each of these three formulas over the whole 

1 N 1  J*=-g 3 5 ( l o + l * ) ( + r + l - - + L - l ) .  

triangles and polygons; 

globe, we get 

c loJ*S*=O, (4a') 

c +oJ*S*=O, (4b') 

c J*S*=O, (4c') 

S 

S 

S 

: 
where the subscript 0 refers to the grid point where J* is 
computed. These vanishing global sums are approxi- FIGURE 5.-Scheme for the Laplacian operator. 

FIGURE 6.-Initial streamfunction (Mercator projection) 
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4. M E  LAPLACIAN 1* 
Taking, again, the indices 0, (1, . . . .  N), we define the 

point Qi equidistant from the three vertices Po, Pi, and 
(the center of the circumscribed circle) such that Qi 
is the perpendicular bisector of the arc POP, as 

shown in figure 5. 
Then Vzt,b=V*(V+) is easily computed, a t  the point 

Po, as the flux of Vt,b flowing out of the polygon (Qi) 
divided by the area s* of this polygon, or 

Notice that the sum of all the contiguous nonoverlapping 
polygons (Qi) covers the sphere. In the actual computa- 
tion the extreme values of the ratio &,&,.+,/POP, were 

- -  
found to be 0.33225 and 0.86380. 

5. THE NUMERICAL EXPERIMENT 
The scheme was tested by integrating over several 

days of simulated time from an initial state which is a 
stationary solution of the barotropic vorticity equation, 

i-=VV, 
wheref is the Coriolis parameter. 

A stationary solution, given by Neamtan [5], is 
$((o, A)=A sin m h e  (sin (p)-BR2 sin (o, 

2Q 
B= n(n+1>-2' 

where cp and X are latitude and longitude, R is the earth's 
radius, and Q is the rate of the earth's rotation. 

The coefficient A was arbitrarily chosen as 1000 m.2/sec. 
The wave number m=6 was chosen to avoid coincidence 
with the five-fold periodicity of the grid around the poles. 
n=7 allows a symmetry of the stationary solution about 
the equatorial plane, whereas the grid pattern has no such 
symmetry. One-hour time steps were used, together with a 
second order Adams-Bashforth time differencing scheme, 
described by Ldly [6]. Forward differencing was used for  
the f i s t  time step. 

The results of the test are shown in figures 6 through 9. 
Comparing figures 6, 7, and 8, we see practically no dis- 
tortion of the waves over the 8 days of integration. How- 
ever, within the uncertainty of the interpolation, there is a 
westward phase displacement error of about 7" of long. in 
8 days. This displacement error comes from the large grid 
distance that was used. 

After 8 days, the relative error of the average square 
vorticity is 5X10-4 and the relative error of the average 
kinetic energy is 3X10-3, as shown in figure 9. These small 
errors are due to  the slight instability of the Adams- 
Bashforth time differencing scheme for average square 
vorticity, and to the accumulation of the relaxation resid- 
uals for the kinetic energy. 

6. CONCLUSION 
The conclusion we draw is that this space differencing 

scheme, for numerical integration of the nondivergent 
barotropic vorticity equation with the icosahedral-hex- 



FIGURE 8.-Errors on the streamfunction after 8 days. 
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FIGURE 9.-Average square vorticity and average kinetic energy 
(relative to initial values), as a function of time. 

agonal grid, gives a satisfactory approximation to the 
analytic solution for the chosen initial condition. More- 
over, the scheme is nonlinearly stable, for any condition, 
because of its constraints on the quadratic quantities of 
kinetic energy and square vorticity. 

The future importance of the icosahedral-hexagonal grid 
lies in its extension to  the primitive equations for the large- 
scale motions of the atmosphere. The principal contributor 
to this investigation, R. Sadourny, is now developing such 
a scheme. 
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